A loss of genome buffering capacity of Dahl salt-sensitive model to modulate blood pressure as a cause of hypertension.

نویسندگان

  • Sophie Charron
  • Raphaëlle Lambert
  • Vasiliki Eliopoulos
  • Chenda Duong
  • Annie Ménard
  • Julie Roy
  • Alan Y Deng
چکیده

Essential hypertension is a complex trait influenced by multiple genes known as quantitative trait loci (QTLs) for blood pressure (BP). It is not clear, however, what roles these QTLs play in maintaining normotension. Insights gained toward the maintenance of normotension will shed light on how hypertension can result from a deficiency or malfunctioning of this maintenance. Currently, congenic strains were systematically constructed using Dahl salt-sensitive (DSS) and Lewis (LEW) rats not only to define QTLs (i.e. in DSS background), but also to ascertain effects of the same QTLs in preserving normotension (i.e. in LEW background), a first such study. Results showed that although LEW alleles for two QTLs on Chromosome (Chr) 18 lowered BP on the DSS background, their BP-increasing DSS alleles failed to influence BP in the LEW background. To further prove that the LEW background is resistant and the DSS background is susceptible to the effects of QTLs, BP-increasing alleles of a QTL on Chr 2 were introgressed into the DSS background, and its BP-decreasing alleles into the LEW background. Indeed, there was no BP-decreasing effect on the LEW background while demonstrating a BP-increasing effect on the DSS background. Thus, a genetic regulation of BP QTLs in the LEW genome inhibits BP changes by nullifying the effects of BP-altering QTLs. In comparison, the DSS genome must have lost the buffering capacity for stabilizing BP. The current work presents good evidence that a lack of regulation for functions of BP QTLs is a potential underlying cause of hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gαi2-protein-mediated signal transduction: central nervous system molecular mechanism countering the development of sodium-dependent hypertension.

Excess dietary salt intake is an established cause of hypertension. At present, our understanding of the neuropathophysiology of salt-sensitive hypertension is limited by a lack of identification of the central nervous system mechanisms that modulate sympathetic outflow and blood pressure in response to dietary salt intake. We hypothesized that impairment of brain Gαi2-protein-gated signal tran...

متن کامل

Klk1 as one of the genes contributing to hypertension in Dahl salt-sensitive rat.

A genome-wide quantitative trait loci analysis for blood pressure was performed using 107 male F2 rats derived from Dahl salt-sensitive and Lewis rats. Blood pressure was assessed by telemetry, and >400 microsatellite markers were used for genotyping. Two major quantitative trait loci for blood pressure were identified at chromosome 1 and chromosome 10. The expression levels of 366 transcripts ...

متن کامل

Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure.

The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, a...

متن کامل

Renal intramedullary infusion of L-arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats.

A role for reduced renal nitric oxide production has been proposed as a mechanism responsible for hypertension in Dahl "salt-sensitive" rats. The present study had 2 goals: first, to determine the relationship between changes in mean arterial pressure and renal cortical and medullary blood flows in unanesthetized Dahl/Rapp salt-sensitive (S) and Dahl/Rapp salt-resistant (R) rats as daily salt i...

متن کامل

Renal medullary 11 beta-hydroxysteroid dehydrogenase type 1 in Dahl salt-sensitive hypertension.

The Dahl salt-sensitive rat is a widely used model of human salt-sensitive forms of hypertension. The kidney plays an important role in the pathogenesis of Dahl salt-sensitive hypertension, but the molecular mechanisms involved remain a subject of intensive investigation. Gene expression profiling studies suggested that 11 beta-hydroxysteroid dehydrogenase type 1 might be dysregulated in the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 14 24  شماره 

صفحات  -

تاریخ انتشار 2005